Poster Showcase

#IAEM24

Citations:

Introduction

Al is beginning to be used to assist with non-emergency calls [1-2] ~ 10,000 lives could be saved annually if callers are reached even 1 minute faster [3] Ο **Motivation - Issues for Emergency Telecommunicators** Some ways being utilized [4-8]: Filtering/transferring (e.g., call trees) Ο Identifying key words in calls Ο Transcribing radio €> Ο Translating languages Ο Missing: While EM attitudes are beginning to be considered in AI deployment [9], a lack of overall Ο practitioner-driven insights remains to inform AI solutions, address barriers, and guide ethical implementation [9] **Research Objectives & Question**

Objectives:

Ο

- To explore how insights from practitioners can inform the development Ο of AI models for effective, equitable implementation.
- To identify potential barriers to AI implementation in emergency Ο dispatch systems.

Research Question:

What are the potential opportunities and barriers to implementing AI effectively and equitably in emergency dispatch systems?

Background of Interviewee (Demographics & Experience) Infrastructure (Current System(s) & Dispatch Protocols) AI Implementation (Sentiments & Suggestions)

Investigation of AI in Michigan Dispatch Centers: **Opportunities, Barriers, and Implementation**

Content Analysis of the Interview Responses

Some Opportunities for AI in Dispatch

Automation

Health monitoring

Quality Assurance

Training

Barriers/difficulties	
Caller perceptions of an emergency or not	Inability to describe scene o location (e.g., visitors)
Certain protocols can be restrictive (i.e., desire to talk more)	Lack of knowing ways to eng (e.g., text to 911, admin lines
Cyber threats	Language and culture
Funding	Signal disruption or call dist
Generational/age gaps (e.g., underutilizing 911 to "not bother" them)	Staffing

Next Steps

Phase 2: Modeling

Data Acquisitio Metrics/Benchm

Conclusions: Path Forward

- **Step 1) Move toward standardization** \rightarrow Different emergency dispatch and operations areas need to come together to begin standardization of some protocols. **Step 2) Education** \rightarrow gain support from the public and emergency telecommunicators on utilizing AI (don't want to lose certain demographics or experienced dispatchers) & public safety industry should understand how AI is built to ensure bias is not being embedded.
- **Step 3) Work with vendors** → build around telecommunicators concerns, limit additional
- technologies (i.e., better integration of infrastructure), and make user friendly.
- **Step 4) Include multiple perspectives** \rightarrow need insights from emergency telecommunicators, administration and leadership of emergency operations, engineers, software developers, sociologists, health professionals, and more.

0ľ	٦	
າa	r	ks

Task: Quality Assurance

Testing

Tomas Garcia Lavanchy (Undergraduate Research Assistant) Aditya Tambe (Undergraduate Research Assistant) Institute for Diversity and Inclusion In Emergency Management: Antoine B. Richards, MPH, CNP (Chief of Staff)